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Formulating the problem as an integer linear program 
We want to solve the following problem: 

Max
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Preprocessing 

Quick preprocessing  

A triplet (k,m,n) is unfeasible if   𝑝!,#,$	 +	∑ min
!,#

𝑝!,#,$$!	&$ > 𝑝 , so we compute the terms 

min
!,#

𝑝!,#,$  for each 𝑛	 ∈ 	 ⟦1, 𝑁⟧ , and then go through all triplets (k,m,n) to check if they are 

feasible. Those which aren’t are deleted of the dataset. 

Algorithm 1 – Unfeasible triplets 

 

 

 

 

 

Input: (N,K,M,pmax, PR) where PR[n] = [(𝑝0,1,2 , 𝑟0,1,2 , k,m) for (k,m) in  ⟦1, 𝐾⟧ ×
⟦1,𝑀⟧  ] 
Output: (N,K,M,pmax, PR) with PR[n] cleared from infeasible (k,m,n) for each n 
• Lpnmin = [min

0,1
𝑝0,1,2  for n in range(N)] 

• Smin  = ∑ 			min
0,1

𝑝0,1,2',2,3  
• For n in range(N) : 

• For (k,m) in  ⟦1, 𝐾⟧ × ⟦1,𝑀⟧ : 
• If   𝑝0,1,2	 + 	𝑆𝑚𝑖𝑛 − 𝐿𝑝𝑛𝑚𝑖𝑛[𝑛] > 𝑝𝑚𝑎𝑥 : delete (n,k,m) from PR 

• Return PR 
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Removing IP-dominated terms 

A term (k,m,n) is IP-dominated is its rate is inferior to the highest rate amongst terms with power 
inferior to 𝑝!,#,$ . Therefore we just have to go across a channel sorted by power, comparing the 
rate with the maximum rate encountered until now. 

Algorithm 2 – Remove IP-dominated terms 

 

We sort each channel in O(KMlog(KM)) and then look at each element in O(KM). 
Therefore the total complexity of the algorithm is O(NKMlog(KM)).  

Removing the LP-dominated terms 

An LP-dominated triplet is simply a triplet that prevents the utility function from being concave.  

Algorithm 3 – Remove LP-dominated terms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input: An instance PR containing all the triplets for each channel and pmax 
Output: Triplets that are not LP-dominated 
• for n=0 to N-1: 

• Sort channel n by power  
• Let be L containing only the first element of the sorted channel n 
• for each triplet t in channel n after the first element : 

• while length(L)>1 and 4[6'].9:;<64[6=].9:;<
4[6'].>?@<964[6=].>?@<9

≤ A.9:;<64[6'].9:;<
;.>?@<964[6'].>?@<9

 : 
• L.pop() #we remove former terms that are now LP-dominated 

• L.append(t) #the last triplet has to be in the hull 
• Replace channel n by L in PR 

• return PR 

Input: (N,K,M,pmax, PR) where PR[n] = [(𝑝0,1,2 , 𝑟0,1,2 , k,m) for (k,m) in  ⟦1, 𝐾⟧ × ⟦1,𝑀⟧  
(except unfeasible triplets)]  
Output: (N,K,M,pmax, PR) with PR[n] cleared from IP-dominated (k,m,n) for each n 
• For n in range(N) : 

• Sort PR[n] by ascending 𝑝0,1,2 
• rmax = PR[n][1] 
• For u in PR[n][1:] : 

• if u[1] ≤ rmax : 
• delete u from PR[n] 

• else : 
• rmax = u[1] 

• return PR 
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For each channel we sort and then a term is added and deleted at most once. This gives a 
complexity of O(KMlog(KM) + 2KM)= O(KMlog(KM)). Therefore the total complexity is 
O(NKMlog(KM)). 
If algorithms 1, 2 and 3 are always used one after another we can sort each channel only at the 
beginning of the preprocessing. This would give a complexity of O(NKM) to the algorithm 3. 
 

Results of preprocessing  

The following table gives the total number of triplets after each step of preprocessing: 

 ”test1.txt” ”test2.txt” ”test3.txt” ”test4.txt” “test5.txt” 

Initially 24 24 24 614400 2400 
Quick Preprocessing 24 0 24 614400 1954 

Remove IP dominated 10 0 13 13242 280 
Remove LP dominated 8 0 9 4846 175 

 

Greedy Algorithm to solve the ILP 

We start with the configuration where for each n, we give power to the user requiring the 
minimal power over all k,m. This solution is feasible since the correspondent used power 
is  ∑ 			min

B
𝑝B,2',2,3 ≤ 𝑝. Then, while our used power is inferior to p, and when we are 

in configuration using 𝑝B(2),2for each n, we take the n with the highest ratio 𝑒B(2)E',2 
compatible with budget p and use 𝑝B(2)E',2instead of 𝑝B(2),2. When there is no more 
transition 𝑝B(2),2 to 𝑝B(2)E',2 compatible with a total budget of p, if we achieved budget p 
exactly then we are done, and we have 𝑥B(2),2 = 1 for all n, and the other 𝑥B,2= 0. 
Otherwise, we take the highest ratio 𝑒B(2)E',2 (over all n), and share the weight 1 between 
𝑥B(2),2 and 𝑥B(2)E',2 with affine combination so that we reach a total budget of p. 
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Algorithm 3– Greedy algorithm  

Each 𝑒B,2 is examined at most once and added to an ordered list of size N in complexity 
O(N), therefore the complexity of our algorithm is O(N2L) = O(N2KM) 

Results for the LP problem 

 

The optimal rate and used power are exactly the same for our greedy algorithm and the LP solver, 
as expected for an optimal solution. However, we can see that our greedy algorithm is a lot faster 
than the generic LP solver, especially on big data sets.  

greedyLP() ”test1.txt” ”test2.txt” ”test3.txt” ”test4.txt” test5.txt” 

Optimal rate 365 / 372.15 9642 1637 
Used power 78 / 100 16000 1000 

runtime 3.5× 106Fs / 4.4× 106Fs 0.03s 4.8× 106Gs 

LP_solver() ”test1.txt” ”test2.txt” ”test3.txt” ”test4.txt” test5.txt” 

Optimal rate 365 / 372.15 9642 1637 
Used power 78 / 100 16000 1000 

runtime 7.6× 106Hs / 6.6 × 106Hs 353s 0.048s 

Input: A list L such that L[n] contains the (𝑝B,2, 𝑟B,2, l) sorted by increasing 𝑝B,2 (and 𝑝B,2 
increases with l) and a power budget pmax 
Output: Greedy rate for the given power budget, allocation 𝑥B,2 
• for n =1 to N : 

•  let 𝑥',2 = 1 and 𝑥B,2= 0 for 𝑙 ≠ 1 
• E = [𝑒=,2 for n in range(N)] sorted by increasing 𝑒=,2 
• p = ∑ 		',2,3 𝑝',2 the budget associated 
• e = E[-1], l,n the indexes associated (e = 𝑒B,2) 
• While p < pmax -  𝑝B,2: 

• p = p -  𝑝B6',2 + 𝑝B,2 
• 𝑥B,2 = 1	, 			𝑥B6',2 = 0 
• Delete e from E, add 𝑒BE',2 to E, maintaining the list sorted 
• e = E[-1], l,n the indexes associated 

• If p < pmax : 
• 𝑥 = 	 I1JK6I

I(,)6	I(*+,)
  

• 𝑥B,2 = 𝑥		,			𝑥B6',2 = 1 − 𝑥  
• Datarate = ∑ 𝑥!,#,$𝑝!,#,$%&!&'

%&#&(
%&$&)

 

• Return(𝑥B,2		𝑓𝑜𝑟	1 ≤ 𝑙 ≤ 𝐿	𝑎𝑛𝑑	1 ≤ 𝑛 ≤ 𝑁, 𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒) 
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Dynamic programming to solve the ILP 
Let be R(n, pmax) the best rate with n channels and a power budget of pmax. 
We can write that R(n,pmax) = max

((,))∈,-.$$/0	$,
)1)#.2

(𝑅(𝑛 − 1, 𝑝𝑚𝑎𝑥 − 𝑝) + 𝑟). 

Therefore we can use a DP algorithm based on this equation: 

Algorithm 5 – Dynamic Programming algorithm to solve the ILP 

 
Computing the maximum over a channel for a given P is done in complexity O(KM). Therefore, 
the total complexity is O(NKMpmax). The space requirement is O(Npmax) if we keep all the 
values of R. However, we can only keep the values for the current n and the previous one, 
lowering the space requirement to O(2pmax) = O(pmax). 

We can keep track of the power used but for the sake of simplicity it is not specified in the 
pseudocode. 

 

 

 

 

 

 

 

 

Input: An instance PR containing all the triplets for each channel and a power budget 
pmax 
Output: Optimal rate for the given power budget 
• for P=0 to pmax: 

•  let be R(1,P)= max
(L,I)∈MNJ22OB	',

I,P

𝑟 

• for n=2 to N the number of channels: 
• for P=0 to pmax: 

• Compute R(n, P) = max
(L,I)∈MNJ22OB	2,

I,P

(𝑅(𝑛 − 1, 𝑃 − 𝑝) + 𝑟). 

• return R(N,pmax) 
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An alternative DP approach: 

An alternative DP approach is to consider sub-problems of finding minimal power allocations 
providing a given sum data rate r less than some upper bound U for the objective function.  
Assuming that the upper bound U is provided we can write the following equation with P(n,U) 
the minimal power allocation with n channels : p 

𝑃(𝑛, 𝑈) = min
((,))∈,-.$$/0	$,

(13

(𝑃(𝑛 − 1, 𝑈 − 𝑟) + 𝑝) 

Therefore, we can use a DP algorithm based on this equation: 

Algorithm 6 – Alternative Dynamic Programming algorithm to solve the ILP 

 

For each n we have a loop of length U, computing a minimum in O(KM). Therefore, the total 
complexity is O(NKMU). As for the algorithm 5, we can use only two arrays at a time, giving a 
space requirement of O(U). 

 

 

 

 

 

 

 

Input: An instance PR containing all the triplets for each channel, a power budget 
pmax and an upper bound U for rate 
Output: Optimal rate  
• for u=0 to U: 

•  let be P(1,u)= min
(L,I)∈MNJ22OB	',

LQR

𝑝 

• for n=2 to N the number of channels: 
• for u=0 to U: 

• Compute P(n, u) = min
(L,I)∈MNJ22OB	2,

L,R

(𝑃(𝑛 − 1, 𝑢 − 𝑟) + 𝑟). 

• return maximum u such that 𝑃(𝑁, 𝑢) 	≤ 𝑝𝑚𝑎𝑥 and the corresponding P(N,u) 
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Branch-and-Bound approach 
We now try a branch-and-bound approach to solve the ILP. Each level of the tree represents a 
channel, and each node of each level represents a feasible pair choice in that channel. Therefore, a 
path from from the source to a leaf is a solution to our problem. At a node k we use the greedy 
algorithm to get both an upper bound (relaxed problem) and a lower bound, to choose if the 
branch is further explored or not. The complexity is O(𝐾𝑀456)because in the worst case we go 
through all the nodes. However, in practice several branches are not explored, lowering the 
average complexity.  

First we need an adapted greedy algorithm to give us the bounds of sub-problems : 

Algorithm 7 – GreedyBounds 

 

 

 

 

 

 

Input: current channel n, left power budget P, E list of all pairs sorted by efficiency in 
reversed order, C list of current used pairs 
Output: Upper and lower bound for the optimal rate  
• Let be R=0 and i=0 
• While i<length(E) : 

• t = E[i] 
• if t.n ≥ n : 

• if t.powerInc ≤ P : 
• P-= t.powerInc  
• R+= t.rateInc  

• else: 
• break 

• i++ 
• min=R 
• if P>0 and i<length(E): 

• t = E[i] 
• x = P/t.powerInc 
• R+=x*t.rateInc   

• return R, min 
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Then we can use the BB algorithm: 

Algorithm 8 – Branch-and-Bound algorithm to solve the ILP 

 

 

 

 

 

 

 

 

 

 

 

Results for the ILP problem 

The following table gives the results for the dynamic programming algorithms: 

DP() ”test1.txt” ”test2.txt” ”test3.txt” ”test4.txt” test5.txt” 

Optimal rate 365 / 350 9642 1637 
Used power 78 / 68 16000 1000 

runtime 0.0014s / 0.001s 18.9s 0.07s 

 

DP2() ”test1.txt” ”test2.txt” ”test3.txt” ”test4.txt” test5.txt” 

Optimal rate 365 / 350 9642 1637 
Used power 78 / 68 16000 1000 

runtime 0.0015s / 0.001s 8.9s 0.08s 
 

Input: A list L containing all the pairs for each channel and a power budget pmax  
Output: Optimal rate  
• Let be E the list of all pairs sorted by efficiency  
• Let be S a stack 
• Let be P=pmax 
• S.push((0,0,0)) #current channel, used power and achieved rate 
• R, min = GreedyBounds(n, P, E) 
• While S in not empty: 

• vertex = S.pop() 
• for pair in L[vertex[0]] : 

• if pair.power +v[1]>pmax: 
• break 

• if vertex[0]<N-1: 
• R1, min1 = GreedyBounds(n+1, P-v[1]-pair.power, E) 
• if R1+ vertex[2] + pair.rate > min: 

• S.push((v[0]+1, pair.power +v[1], vertex[2] + pair.rate)) 
• min= R1+ vertex[2] + pair.rate 

• else: 
• min=max(min, vertex[2] + pair.rate) 

• return min 
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We can see that the alternative DP algorithm is a lot faster on big data sets. However, we need to 
provide him a good upper bound (by using the LP algorithm for example), otherwise it will take 
much more time (65s for test4 with 100 000 as an upper bound for example). 

Stochastic Online Scheduling 
To simulate the problem, we make a function data(pmax, rmax, M, N) which gives a list of NM 
pairs of power less than pmax and rate less than rmax, using discrete uniform distribution. The 
list is returned sorted on the ratio rate/power. Each pair contain the values of power, rate and n 
(channel number). 

When the user k arrives, we call data() to gives us a list of pairs. Then we use a greedy approach: 
we try every pair by decreasing ratio rate/power until we find one which complies with two 
constraints: 

- The corresponding channel is not already used 

- The pair power + the already used power is less than k*pmax/K. 

The first one is self-explanatory. For the second one, we first though of just verifying that 
pair.power was less than pmax/K. However, this would mean that if a previous user did not used 
all the power allowed to him, some power will be wasted unnecessarily. 

Algorithm 9 – Online algorithm  

 

After implementing this algorithm, we tried another version with a little modification: we 
compute the average ratio rate/power for a uniform distribution with the given parameters pmax 
and rmax. Then we only keep pairs which have a ratio rate/power of at least the average. It is 
especially efficient if the number of users is larger than the number of channels, which is the case 
in the studied example. 

Input: pmax and rmax upper bounds for power and rate of the uniform distribution, p 
the power budget, M, N and K 
Output: online rate  
• Let be channels an array with channels[0]=1 if the channel is used, 0 if not. 
• Let be pcurrent=0 
• Let r=0 the current achieved rate 
• for k=0 to K-1: 

• for pair in data(pmax, rmax, M, N) 
• if channel[pair.n]==0 and pair.power+pcurrent ≤(k+1)*p/K: 

• channel[pair.n]==1 
• pcurrent+= pair.power 

• return r, pcurrent 
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Algorithm 10 – Online algorithm with average  

 

Results for the online problem 

For p=100, pmax =50, rmax =100, M=2, N=4 and K= 10 we compute the average competitive 
ratio, rate achieved and used power of our algorithms on a large number of problem instances: 

 

 online() online2() DP() 

Competitive ratio 0.52 0.58 1 
Average rate achieved 180 203 348 
Average used power 34.7 34.8 41.7 

 

We can see that both online algorithms have a competitive ratio just above ½. The version 2 has a 
better ratio with 0.06 more, which is non-negligeable as we can see on the average rate achieved. 

The two version are really close in terms of average used power, slightly less than the offline 
optimal algorithm. 

 

Input: pmax and rmax upper bounds for power and rate of the uniform distribution, p 
the power budget, M, N and K 
Output: online rate  
• Let be E the average of rate/power for a uniform distribution of power and rate 

with parameters pmax and rmax 
• Let be channels an array with channels[0]=1 if the channel is used, 0 if not. 
• Let be pcurrent=0 
• Let r=0 the current achieved rate 
• for k=0 to K-1: 

• for pair in data(pmax, rmax, M, N) 
• if channel[pair.n]==0 and pair.power+pcurrent ≤(k+1)*p/K and 

pair.rate/pair.power ≥ E: 
• channel[pair.n]==1 
• pcurrent+= pair.power 

• return r, pcurrent 


