Reinforcement Learning Volleyball

Sacha Cerf, Virgile Foussereau, Quentin Lao and Victor Baillet

Abstract—This project focuses on the application of Rein-
forcement Learning techniques to the domain of volleyball.
Specifically, it aims to improve the existing Unity environment
called Ultimate Volleyball that uses the ML Agents library to
train agents able to play 1vl volleyball games. The project
has two main goals: (1) enhance the existing environment using
reward engineering techniques to speed up the training process
and (2) develop and compare several methods for implementing
2v2 volleyball games using Reinforcement Learning. To achieve
these goals, the project will explore various ways to improve
training in Reinforcement Learning and to make agents cooperate
in a complex and dynamic environment.

I. INTRODUCTION

The aim of this article is to present our method and results
regarding the training of 1v1 and 2v2 volleyball players using
Reinforcement Learning. More specifically, we started from
an existing Unity environment called Ultimate Volleyball
originally designed for 1v1. This environment uses the Unity
ML Agents Toolkit, which is a Python library to train RL
agents in the Unity engine [2]. Using reward engineering,
we sped up the 1vl training process, and then tried various
methods for the training of 2v2 volleyball agents. For the
1vl set-up we aim at maximizing the number of passes
over the net while for the 2v2 set-up we want to train
competitive teams which try to win the game. To evaluate
our performances in 2v2, we developed a hard-coded baseline.

The aspects of RL that we are specifically looking at in this
project are : (1) reward engineering and (2) cooperation, with
application in the domain of team sports. This is interesting
and relevant to RL as team sports pose unique challenges
such as coordination, communication, and cooperation
between agents. Reward engineering is also a crucial aspect
of Reinforcement Learning as it plays a vital role in shaping
the behavior of RL agents. In RL, the agent’s objective is
to maximize the expected cumulative reward over time, and
the reward function is the mechanism through which the
agent receives feedback on its actions. Therefore, the reward
function is critical as it determines the agent’s behavior and
influences its learning process.

Previous work in the field of RL for team sports has focused
mainly on soccer or basketball , with limited studies in
volleyball. Volleyball is a difficult case for RL as not letting the
ball fall is a complex action that requires the agent to anticipate
and act fast. Relevant research has been conducted for 2D
volleyball, in the Slime Volleyball environment [4]] [5]]. In this
project we use a 3D environment named Ultimate Volleyball.
In [T, the author was able to train an agent to play in a one
versus one situation, with the goal to obtain the longest rally
possible (i.e maximizing the number of passes).

In our work, we vastly improve these results, both in
resulting episode length (length of a rally) but also in training
speed. We also step up from this initial environment by adding
a second player to each team, in order to study how RL
can manage cooperation in the complex case of volleyball.
To make the cooperation valuable, we will no longer aim at
getting long rally but rather winning the game.

The specific limitations of our study include the limited
scope of the Ultimate Volleyball environment. Also, to over-
come reward sparsity in 2v2, we made the choice to define
separate models for the two players and give them rewards
that are slightly tainted with our knowledge of the game, which
orients their strategy. Further studies could probably improve
the performance of our 2v2 team with more complex models
allowing a from scratch approach.

II. BACKGROUND

Fig. 1. Illustration of the volleyball environment

The Ultimate Volleyball environment has been developed
using Unity ML-Agents platform. Two players, a blue one
and a purple one, play volleyball over a net. The agent is a
1 meter sided cube, and the terrain is a rectangle that is 15
meters large and 30 meters long. The ball is a 0.15 meter
radius sphere.

The action space consists of 4 discrete action branches:

o Forward motion (3 possible actions: no action, forward,

backward)

« Rotation (3 possible actions: no action, rotate left, rotate

right)

« Side motion (3 possible actions: no action, left, right)

o Jump (2 possible actions: no action, jump)

These actions allow a player to move freely across the
field. The agents look like cubes, but have sphere colliders to
help them control the ball trajectory. Collisions are handled
by Unity physics.

The observation space consists of 11 floating point values:

o Agent Y-rotation (1 float)

« Normalised directional vector from agent to ball (3 floats)
« Distance from agent to ball (1 float)

o Agent X, Y, Z velocity (3 floats)

o Ball X, Y, Z velocity (3 floats)

In the next parts, especially for the 2v2 study, we will
change some of the actions and observations from this initial
set-up.

The base reward function from [1]] gives a +1 reward each
time the agent hits the ball over the net. Using this reward
function, the author reaches satisfying results after 20 millions
steps (~ 7 hours of training), with a resulting mean reward
between 2 and 3 (which corresponds to 2-3 exchanges above
the net).

Regarding the algorithm used for training, we will use
Proximal Policy Optimization (PPO). It was originally devel-
oped by OpenAl [[6]. PPO is an actor-critic algorithm that
updates policy in proximity to the previous by clipping its
objective function with a maximum difference of ¢ [7]]. In
our configuration, we choose ¢ = 0.15, a little bit lower
than the default value of ML-Agents. Indeed, big policy
updates are risky while small policy updates are more likely to
converge. As our environment is quite complex and can have
difficulties to converge, a lower ¢ is necessary. For the neural
network in the the PPO algorithm we choose empirically to
use two hidden layers of 256 neurons and a learning rate of
0.0006. Other choices for the tuning of the PPO algorithm are
summarized in the the configuration provided in appendix

III. METHODOLOGY/APPROACH
A. Improve Ivl training

Before changing the environment to a 2v2 set-up and
introducing cooperation, our first goal is to improve the
training in the simpler 1v1 case by doing reward engineering.
Effective reward engineering can significantly improve the
training speed and stability of RL algorithms [8]. The main
challenge is to introduce as many rewards as possible to
increase the learning opportunities of the agent (preventing
reward sparsity) without denaturing too much the resulting
optimal strategy. On one hand, a well designed reward function
can guide the agent to learn the desired behavior faster and
to avoid undesired ones. On the other hand, a badly designed
reward function might make the optimization problem even
more difficult, creating more local optima, or have an “’exploit”
that draws away the attention of the agent towards a simple
reward pattern that does not help him winning the actual game.
Moreover, a reward function that is too oriented and tainted
with presupposed knowledge of the game might guide the
agent to an effectively suboptimal strategy, preventing him
from finding original ones that may be more efficient.

In our case, we believe that the base reward function is too
sparse for an efficient learning. The set of actions needed to
obtain the +1 reward is very large and complex : computing
where the ball is going to fall, going under it, jumping to
push the ball at the right time, making sure to push it in the
right direction over the net. Our first idea is to introduce a

negative reward Ny whenever the agent let the ball fall on
the ground. This negative reward is not constant but depends
on the distance D, between the agent and the ball when it
touched the ground. We use this formula:

D
Ny(Dy) = =1+ exp (=) (M

This function gives a negative reward close to -1 when the
agent is far from the impact point of the ball, and gets closer
to 0 when the agent is closer to the ball impact point. This
gradation allows the agent to quickly understands that he needs
to go at the expected impact point of the ball. Note how this
behaviour is inevitable to reach an optimal policy. Thus, this
reward should not change the resulting optima, simply make
the training faster. A graph of the function is provided in figure

2

0.0 1

Reward

1.0

T T T T T T T T
0 2 4 6 8 10 12 14
Distance between player and impact point of ball (m)

Fig. 2. Negative reward for letting the ball fall, depending on the distance
from agent to fall point

In figure 2| we plotted a vertical line for DJIC2 = 0.65m. This
corresponds to the player radius (0.5) plus the ball radius
(0.15). As these two objects are both not deformable objects,
we always have Dy > 0.65m which means that the negative
reward for letting the ball fall is always more negative than
N]}ﬁ = —0.3 more or less. This fact will be useful for our
second idea of reward engineering.

By jumping under the ball before it falls on the ground, the
agent will make the ball bounce in the agent-ball direction,
but at the beginning the agent does not know how to position
himself, so the agent-ball direction will typically head out of
the terrain. If the ball is pushed hard enough (by jumping
before impact for example) to go out of the player court, it
will totally prevent the negative reward N;. The positive +1
reward for sending the ball over the net will teach the agent
to bounce the ball in the correct direction. However this may
take some time to be learned. Also, in the initial version hitting
the ball out of bounds will end the episode but will not add
a negative reward to the agent. Consequently, agents trained
this way have a tendency to send the ball out of bounds. The
author of [1]] states that she tried to add a -1 negative reward

for sending the ball out of bounds, but it led to “shy” agents
who prefer letting the ball fall than playing it and risking to
send it out of bounds. This was true in the author set-up with
not negative reward for letting the ball fall, but it is not our
case. By setting a negative reward for sending the ball out of
bounds N,,;: between 0 and N]13 we can avoid this shyness
issue while still penalizing hitting the ball out of bounds : the
reward will always be bigger for a ball hit. To make the agent
learn faster we decide to make N,,; dependant on the angle
0,.: between the net direction and the ball direction when it
goes out of bounds. The formula is given in ()

Nf
Nowt (Oout) = - * (cosOpur — 1) (2)

For instance, if the player hits the ball out of bounds in the
complete opposite direction of the net, the negative reward
will be very harsh. The closer the agent is to make a correct
hit (towards the net), the smaller the penalty will be. The
important fact is that hitting the ball out of bounds will never
leads to a harsher negative reward than letting the ball fall. A
plot of the function is provided in figure [3]

0.00

—0.05 1

—0.10 1

-0.15 1

Reward

—0.20 1

—0.25 1

—0.30 1

T T T T T T T T
0 25 50 75 100 125 150 175
Angle between net direction and ball direction when it goes out of bounds (deg)

Fig. 3. Negative reward for hitting the ball out of bounds, depending on the
direction

B. Explore 2v2 confrontation

After improving the 1v1 training we decided to study how
we could implement a 2v2 environment and train agents on
the same team to collaborate. Simply adding a new player
to each team proved not to be sufficient, even when adding
observations concerning the position of the teammate. It would
typically end in the two players wanting to push the ball to
the other team court, with little to no cooperation. To make
cooperation interesting for agents we decided to add two key
components : a competitive aspect and a touch action. Instead
of just sending the ball back and forth over the net, the overall
goal of a team is now to score a point (making the other
team to fail). The new spike touch is a discrete branch with
2 values (no action, touch). The touch simulates the action of
the player’s arms.

« If the player is on the ground, it is a set. The ball goes
in the ball-player direction at speed of 20 m/s.

o If the player is in the air (after a jump) it is a spike.
The ball goes at right angles to the ball-player direction,
towards the opponent’s court (this mimics the action of
an arm that would go in circular motion), at a speed of
30 m/s. A spike is much easier to make after a set since
the timing of the touch needs to be frame perfect when
the ball goes at a high speed towards the hitter. Hence
the need for collaboration.

As a spike is much more powerful than a regular touch,
being able to spike in the opponent court gives a competitive
advantage.

This action is however quite complex. To avoid too
much complexity, we remove the rotation action from the
initial environment. This does not reduce the player ability
to move across the field, as translation is still possible in
four directions. This compensate a part of the new action
complexity but could be considered a bit less realistic.
However it not completely unrealistic either because real
volleyball players often try to be always facing the net,
using a lot of side or backward motion. Note that these new
“motion” controls are bang-bang second order controls, that
is that they set the forward and side acceleration to +a or
—a, where a = 3m/ s2. The forward and side acceleration
are added, and the sum is normalized so that a diagonal
movement is not faster.

We also change the observation space. First, we add the
directional vector and distance to team mate. Second, we also
add an int between 0 and 2 which describes the last player to
touch the ball : 2 if it is an opponent, 1 if it is the player’s
team mate and O if it is the player itself. Finally we remove
the agent current rotation as it is now constant (always facing
the net).

To summarize these changes, here is a the new environment
description :

The action space consists of 4 discrete action branches:

o Forward motion (3 possible actions: no action, forward,
backward)

« Side motion (3 possible actions: no action, left, right)

e Jump (2 possible actions: no action, jump)

o Touch (2 possible actions: no action, touch)

The observation space consists of 15 elements:

« Normalised directional vector from agent to ball (3)

« Distance from agent to ball (1)

o Normalised directional vector from agent to team mate
(3)

« Distance from agent to team mate (1)

« Ball X, Y, Z velocity (3)

e Player X, Y, Z velocity (3)

o Last player to touch the ball (1)

Several ways to train the two players to cooperate could be
used. We distinguish three main approaches :

e (A) Single network controlling both players

« (B) Use an identical network for each player

¢ (C) Use different networks for each player

The approach (A) is actually a single agent controlling
both players. This may lead to the best strategies but needs
a complex model and is highly unrealistic in our case. The
approach (B) is to train an identical network for each of the
two players. It means that, in an identical situation, both
agents would do the exact same action. In theory, good results
are possible with this approach. As the player knows his
team mate position, we can imagine a trained agent who has
learned to let the player closest to the ball defend and set,
while the other goes for the spike. However, this is highly
complex to learn. Indeed, not only the agent has to learn very
different behaviours (defend & set or spike) but he also needs
to knows which behavior adopt depending on the situation
and his team mate actions. The approach (C) makes things
easier by allowing to specialize each agent. In this approach,
an agent only need to learn one behavior. In our case we
separated the tasks in two different roles : a setter and a
hitter. The setter’s goal is to defend the opponent ball and
set it for his team mate, while the hitter’s goal is to spike the
ball in the opponent court. This is quite realistic as in reality,
volleyball players often have a specialized role.

For our team with specialized roles, we adapt our reward
function depending on the role. For the setter we have :

o Ny (Dy) for letting the ball fall if the last touch was the
opponent team

o Nout(Bser) for hitting the ball out of bounds, with 0.y
being the angle between the ball direction and the team
mate direction (instead of the net direction in 1v1 case)

o -1 for jumping

o +0.5 for a successful set to the hitter, leading to a spike

o +1 for a successful set to the hitter, leading to a successful
spike over the net

For the hitter we have :

o Ny¢(Dy) for letting the ball fall if the last touch was his
setter team mate

e Nyut(0oue) for hitting the ball out of bounds or spiking
the ball in his own court, with 6,,; being the angle
between the ball direction and the net direction (as in
1v1l case)

e -0.1 for jumping if the last touch is a set from his team
mate, -0.2 otherwise

o +0.3 for a spike after a set from his team mate

o +1 for a successful spike over the net after a set from his
team mate

This set of positive and negative rewards aims to teach
the strategy “’set & spike” to the players. The small penalty
attributed to the hitter for jumping is an idea from our
reviewers. Indeed, several of them were disturbed by our first
iteration where the hitter was basically constantly jumping
around to spike the ball. In reality this is not possible, as

jumping cost a lot of energy. The penalty we added represents
this energy cost. However, it was quite hard to find the exact
penalty value to use. A penalty too harsh leads to a hitter never
wanting to jumping while a penalty too soft has no effect on
the hitter behavior. The values we used in our implementation
allowed us to obtain a hitter jumping only when necessary.

C. Model evaluation against a baseline in the 2v2 setting

The question of how to evaluate our 2v2 model is very
important. One could think of just measuring the episode
length to see how long the agents can make a rally last,
but that is not an objective metric of the performance of the
agent. Indeed, a mediocre agent can have a long rally against
another mediocre agent as long as it knows how to hit the
ball over the net. The issue is that here, the adversary is
the model itself. In the 1vl setting, this was not a problem
because the margin of progress after having learned how to
hit the ball over the net is not very large. However in the
2v2 setting, many more factors influence the performance of
the agent : knowing how to set correctly and spike at the
right moment, place the spike correctly on the other court,
preferably with a critical trajectory (almost vertically, or in
the corners)... Measuring the mean reward is not a satisfying
metric either, because we want to observe the effect of adding
and removing some rewards on the result. For this reason, we
decided to use a metric based on the model’s performance
against a hard-coded baseline. Our metric for a given model
is the probability that it wins a point against the baseline (see
Fig[8), determined empirically on a high number of points. A
part of our team was dedicated to its implementation. Here,
we describe its strategy and computations in detail, as well
as the difficulties met in its development, to highlight how
complex the challenges the RL agent has to overcome are.
We even had to do some simplifications on the physics of
the environment along the way to implement the baseline in
a reasonable amount of time.

1) Move target prediction and agent control: Here, we
explain how the agents decide where to move to aim at a
given target, and how they move to a given point. The aiming
of the agents is theoretically perfect in the sense that it can
compute the exact position where it needs to be to aim at
a particular target. Let us describe these computations. We
denote by (uy, uy,u) the world’s coordinate system. First,
suppose that we know the position H of the ball when it will
be hit. We introduce :

o T, the target point.

T (A H—I;-Tm) X 1i;, , the vector that is orthogonal

to u, in the plane spanned by }ﬁ and iy (which will
be the plane of the trajectory).

e (2, yr), the coordinates of T' in the coordinate system
(H, ' 1iy).

¢ v, the ball touch velocity (here, 20 m/s)

e g = 9.81m/s, the gravitational acceleration

o 6 € [0, 7], the unknown, which is the angle of propulsion.

Then, ignoring air resistance, we get the following equation:

1 g2
- (yT * 203 cos? 0)

It is important to note that when v is high enough (compared
to 27 and yr), this equation has two solutions : one in [0, §]
(the "straight” solution), and one in [7, 7] (the "bell” solution).
When it is the case, we prefer the “bell” solution, because it
will give more time for the hitter to position itself. For this
reason, we first try a dichotomy in [§, 7], then apply Newton’s
method if no solution is found. From 6, one can find the correct
position for the agent by projecting the position of the ball
along the vector cos 61}, 4 sin 6, (which is the set direction)
on the plane (y = 0.5) (which is the plane of the agent when it
is not in the air), which gives the point Py (depending on H).
Now, one has to find H, the position of the ball when it will
be hit. Many solutions are possible, but there is one constraint
: H must be in the range of the agent from Py . Indeed, Py is
just the projection of H on a plane following the set direction,
there is no guarantee that this point is close enough to H (think
about when the set direction is very horizontal). However, if
we take an H that is low enough, we can guarantee that Py
will be close, but if H is too low then the ball speed will be
high at H, and the ball will travel a non negligible distance in
one frame, which drastically undermines precision from our
observations. The previous reasoning led us to the following
protocol to find a convenient H.

o For y in [0,7], where r is the agent’s range, let H, be
the unique point of the ball trajectory that has ordinate y
and negative y ball speed.

o Find yo = max{y € [0,7], [|[H,Pp,|| < r}.

 The hit point is H,.

We do not give the formula for H,, because it is simply
parabolic trajectory prediction. Finding yo can be done with
a dichotomy for example. Using this method, we get a 100%
hit rate when the target is a 0.2 meter radius ball (we did not
try with a smaller target), and the agent is placed perfectly
on PHyo' However, in practice, reaching PHyo at a sufficient
precision is very hard. As an illustration of this, when we
first tried, as a simplification, to switch from second to first
order bang-bang control (that is, control the speed rather than
the acceleration), we could not reach Pp, ~precisely enough,
because the distance that the agent travelled in a single time
step was too high (for a speed that allowed the agent to
cover the court in a reasonable amount of time). Thus, second
order control is mandatory to get sufficient precision and high
average speed. In 1D, the optimal solution to this control
problem would be to accelerate towards the target, and to start
decelerating when the distance to the target point is exactly
the breaking distance, which can be easily calculated. However
here, the things are more complicated due to the fact that the
deceleration on x depends on the deceleration on z because
of normalization. For this reason, we decided to increase the
agent’s rigidbody’s drag and to rely on it for breaking. To
reach a given target point, the algorithm calculates at each
frame its stopping point in free motion (that is, if no control
is applied), 5 mo s
= XU + 7,

where m is the player’s mass, A the drag, ¢’ its current velocity,
P its current position, and 7 its target point. Then, it adapts
its acceleration on the x and z coordinates depending on the

position of S and P relative to 7T'. For instance, if P, > T, and
S, > T,, it will accelerate negatively on the x-axis. We realize
that this control is not optimal and needs further improvement.

2) Strategy of the team: Here, we explain the strategy of the
team, which uses the prediction and control tools described in
the previous section. The idea is to realise a simple set-spike
scheme. First, the setter predicts if the ball will land on its
court. If it is the case, it uses the aiming and control module
to place itself in order to set the ball towards the attack spot,
which is in front of the center of the net. In the meantime, the
hitter uses the control module to place itself just before the
attack point. It then jumps exactly 0.2s (the time it takes to
reach its spike when jumping) before the ball reaches its spike
height. When the ball is in its range, it predicts in each frame
the trajectory of a potential spike, and waits until the critical
moment when the ball will land on the back boundary line. If
the hitter could not reach the attack spot in time to jump and
hit, it will simply touch the ball from the ground and send it
towards the opponent court.

IV. RESULTS AND DISCUSSION
A. Ivl results

In 1vl, our modifications to the environment leads to a
much faster training, especially in the early part. First, our
engineered reward function allows us to reach an episode
length of 20 steps (2s) two times faster than the original model
(4M steps againt 8M steps). Using also our other modifications
in the PPO configuration, observations and actions we can
speed up the early part of the training by a factor of 8. This
result is visible on

00k 00k 800 M M 1.4M oM &M M 2.2M 2.4M

Fig. 4. Episode Length as function of number of steps for original model
(gray) vs ours (orange) during early phase of training

These changes also allow us to reach an episode length of
200 steps (20s) in 20M training steps against 150 steps (15s)
in 60M training steps for the original model as seen in figure

B. 2v2 results

1) 2v2 training: In 2v2, we tried several approaches. Our
first attempt was using approach (B) as described in subsection
I11-B| which is an identical network duplicated for each agent.
In practice, we did not manage to make the agent differentiate
his behavior depending on his team mate using approach
(B). We believe that this is because it is very complex for
an agent to learn completely different behaviors and switch
between them. Therefore, our result using this approach was

SM oM SM 20M 25M 30M 35M 40M asm S0 55M 60M

Fig. 5. Episode Length as function of number of steps for original model
(blue) vs ours (orange)

no very satisfying with two agents always going for the ball
to push it back to the opponent court without any cooperation.

We decided to focus on approach (C) : separate and
specialized networks for each agent. Our first attempt was to
replicate exactly a real volleyball strategy: player 1 defends
the ball after the opponent attack, player 2 sets it and player
1 spikes. However, this attempt was not successful and the
agents were never able to learn this full sequence. The player
1 role was probably the cause of this failure: depending
on the situation, he either needs to make a defensive touch
towards its setter or he has to spike towards the opponent
court. Doing these two very different set of actions was
too hard to learn for our models. Therefore, we decided to
simplify the strategy by “merging” the defense and the set
part: player 1 defends the ball and player 2 immediately
spikes it. This is the set-up described at the end of

The result of this final approach are more satisfying. The
sequence of set and spike is successfully learned. We even
see very interesting and unexpected behavior such as the spike
strategy. Our trained agents converge towards a strategy called
”quick spike” in volleyball. Basically, the hitter waits very
close to his setter and spike the ball directly after the set (in
the ascending phase). In a more “classic” strategy, that we use
in our baseline, the hitter waits for a set at a specific point
and spike in the descending phase of the set. On the reward
curve in figure [6] we can see that the setter is the first to
learn that he needs to make a set, while the hitter reward is
decreasing because he has not yet learn that he needs to attack
the set given by his setter. After this initial phase, both reward
functions increase together as the agents learn to collaborate
successfully.

0 5M 10M 15M 20m 25M

Fig. 6. Reward as function of number of steps for Hitter (dark blue) and
Setter (orange)

The training in figure [6] was done before receiving the
reviews on our initial work, thus before implementing the
jumping penalty for the hitter. We added it to our model
and started a new training. However, instead of starting from
scratches, we used the previous trained agents as the initial
model. The results are presented in figure

Fig. 7. Reward as function of number of steps for the Hitter with jump
penalty (light blue) and without (dark blue) and the Setter with jump penalty
(brown) and without (orange)

We can see that, at first, the mean reward of the Hitter
has dropped in comparison with the end of the curve where
he had no penalty for jumping. This is logical as he has not
learned yet to no jump too much. However, as he learn it,
the reward keep going up and we end up with agents that are
a lot better than the previous ones. We were really surprised
by these results. The jump penalty was added to prevent
the hitter for jumping tirelessly as it was unrealistic and
unpleasant to the eyes, but we did not expect an improvement
in performance. With hindsight, our interpretation is that
jumping constantly caused the Hitter to sometimes miss the
ball due to bad timing. By penalizing the jump, we force the
Hitter to jump only at the right timing. Therefore, it increases
his chances to do a good spike.

2) 2v2 competition against a baseline: To evaluate the
performance of our trained agents, we oppose them to our
baseline team described in subsection We start a match
between the team and the baseline and count the number of
points won by each team, as in a real volleyball game. We
let the match run for more or less a thousand point to verify
that the ratio of the scores converges to a constant. We test 3
match-up: a dummy team with two agents only returning the
ball as a set over the net, our RL team without jump penalty
and finally our complete RL team (with jump penalty). The
results are provided in table

TABLE I
PROBABILITY OF WINNING A POINT AGAINST THE BASELINE

Probability of winning a point
against the baseline

Dummy team 38 %
RL team without jump penalty | 60 %
RL team 70 %

As we can see, the complete RL team we developed
outperforms the hard-coded baseline by a very large margin.
Indeed, a few more % in the probability of winning a point
leads to a very high probability of winning a game. We note p

the probability of winning a point and we play a game where
the goal is to be the first to score n points. Given p, what is
the probability P,, to win the game ? The exact formula can
be determined and is provided in equation [3]

n—1

P, =" n+k—1>1_ K 3
P ,;) (o)a-p 3)
We plot this formula for n=25 (a volleyball set is 25 winning
points) in figure [§] As we can see, our RL teams have a
very high chance of winning. With its probability p = 0.7 of
winning a point, our complete RL team reaches a probability
Pss = 0.998 of winning a match set against the hard-coded

baseline!

80 J [}7,F444444447

o
@
|

o
o
|

——- Dummy team
RL team without jJump penalty
=== RLteam

o
IS
|

Probability of winning the game

o
[N}
|

0.0 !

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Probability of winning a point

Fig. 8. Probability of winning the game as a function of the probability of
winning a point

V. CONCLUSIONS

Using reward engineering we have been able to greatly
improve the training of agents in a 3D volleyball environment.
Final performance is increased and the training is two times
quicker if we only change the rewards, 4 times quicker
using our custom PPO configuration and 6 times quicker
by changing observations and actions of the agent in the
environment. In this paper, we also explored different ways
to train agents to collaborate in two versus two competitive
games. We found that, in our case, the best option was to
train each player of the team for a specialized role. Our final
trained model is able to consistently beat a hard-coded baseline
with 70% chance of winning a point, which means a 99.8%
chance of winning a 25 points set. Further developments of
our work could try to develop more complex strategies, for
example in a 4v4 set-up.

REFERENCES

[1] Joy Zhang. Ultimate Volleyball: A multi-agent reinforce-
ment learning environment built using Unity ML-Agents.
2021. URL: https://www.gocoder.one/blog/3d-volleyball-
environment-with-unity-ml-agents/.

(2]

Unity Technologies. ML Agents Toolkit Release 20. 2022.
URL: https://github.com/Unity-Technologies/ml-agents.
Unity ML-Agents. Soccer Twos. 2021. URL: https://
deepanshut041 . github . 10 / Reinforcement - Learning /
mlagents/05_soccer_twos/.

Jaleh Zand, Jack Parker-Holder, and Stephen J. Roberts.
On-the-fly Strategy Adaptation for ad-hoc Agent Coordi-
nation. 2022. DOI: [10.48550/ARXIV.2203.08015. URL:
https://arxiv.org/abs/2203.08015,

New Jun Jie et al. “Bayesian Multi-Agent Reinforcement
Learning for Slime Volleyball”. In: 17th STePS (2020).
John Schulman et al. Proximal Policy Optimization Algo-
rithms. 2017. DOIL: [10.48550/ARXIV.1707.06347. URL:
https://arxiv.org/abs/1707.06347.

Jesse Read. “Lecture VI - Reinforcement Learning
III.” In: INF581 Advanced Machine Learning and Au-
tonomous Agents. 2023.

Daniel Dewey. “Reinforcement learning and the reward
engineering principle”. In: 2014 AAAI Spring Symposium
Series. 2014.

https://www.gocoder.one/blog/3d-volleyball-environment-with-unity-ml-agents/
https://www.gocoder.one/blog/3d-volleyball-environment-with-unity-ml-agents/
https://github.com/Unity-Technologies/ml-agents
https://deepanshut041.github.io/Reinforcement-Learning/mlagents/05_soccer_twos/
https://deepanshut041.github.io/Reinforcement-Learning/mlagents/05_soccer_twos/
https://deepanshut041.github.io/Reinforcement-Learning/mlagents/05_soccer_twos/
https://doi.org/10.48550/ARXIV.2203.08015
https://arxiv.org/abs/2203.08015
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347

Appendix A

O 00 N o W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

AN

APPENDIX

trainer_type: ppo
hyperparameters:
batch_size: 2048
buffer_size: 20480
learning_rate: 0.0006
beta: 0.003
epsilon: 0.15
lambd: ©.93
num_epoch: 4
learning_rate_schedule: constant
network_settings:
normalize: true
hidden_units: 256
num_layers: 2
vis_encode_type: simple
reward_signals:
extrinsic:
gamma: 0.96
strength: 1.0
keep_checkpoints: 5
max_steps: 20000000
time_horizon: 1000
summary_freq: 20000

Fig. 9. Training configuration (documentation on this page)

Appendix B

You can access our code here for 2v2 set-up and here| for
1vl set-up. Small animations are provided in the readme of
each branch to illustrate the results, in case you do no want
to install everything.

https://github.com/Unity-Technologies/ml-agents/blob/release_18_docs/docs/Training-Configuration-File.md
https://github.com/Virgile-Foussereau/volleyRL/tree/2v2baseline
https://github.com/Virgile-Foussereau/volleyRL/tree/main

	Introduction
	Background
	Methodology/Approach
	Improve 1v1 training
	Explore 2v2 confrontation
	Model evaluation against a baseline in the 2v2 setting
	Move target prediction and agent control
	Strategy of the team

	Results and Discussion
	1v1 results
	2v2 results
	2v2 training
	2v2 competition against a baseline

	Conclusions

